SELECCIÓN DEL HÁBITAT DE NIDIFICACIÓN POR EL AGUILUCHO CENIZO

Circus pygargus EN LA PROVINCIA DE CÁDIZ

DAVID BARROS *y JOSÉ RAMÓN BENÍTEZ **

*Aptos. Tenisol, Edif. Durero, 1ºB, 11310 Sotogrande, San Roque
**Avda. Alvaro Domecq, 25. 11405 Jerez de la Frontera*

RESUMEN

Se ha realizado un análisis cuantitativo de los factores que limitan la selección del hábitat de nidificación del Aguiluchó cenizo (*Circus pygargus*) en la provincia de Cádiz (S.O. de España). Para ello se han analizado un total de 38 variables que definen la estructura del hábitat y de la vegetación, el grado de humanización y el grado de agregación de las parejas reproductoras. Se establecen diferencias estadísticamente significativas en alguna de estas variables entre las unidades de muestreo, los puntos con nido y puntos escogidos aleatoriamente. Estas hacen referencia al tipo de cultivo y a la inclinación del terreno, a infraestructuras como carreteras y tendidos eléctricos y a la disposición de los nidos en la campiña. También se establece la función discriminante que determina las variables que mejor definen el hábitat de nidificación.

Palabras Clave: *Circus pygargus*, hábitat de nidificación, selección, suroeste de España.

INTRODUCCIÓN

El Aguiluchó cenizo (*Circus pygargus*) es una rapaz de mediano tamaño con distribución estival fundamentalmente Paleártica, extendiéndose también por Asia central hasta el norte del río Yenissei; e invernal, en África al sur del Sáhara y en la India (Hoyo, Elliot & Sargatal, 1994).

En la Península Ibérica hace su aparición a finales de Marzo y migra a sus áreas de invernada entre agosto y octubre. Habita zonas de campiña de cultivos extensivos, herbazales altos, zonas de marismas, matorral y repoblaciones jóvenes de coníferas. La población ibérica se estima entre 3500 y 6000 parejas (Ferrero, 1995).

La mayor parte de la población ibérica nidifica en campos cultivados, generalmente de cereal. Se ha cuantificado el efecto de la actividad de la siega y las causas de fracaso reproductivo (Castaño, 1995).

Según el Libro Rojo de los Vertebrados de España es una de las rapaces que ha visto como sus efectivos han disminuido de modo más alarmante en las últimas décadas, por amenazas como la mecanización de las labores del campo, la pérdida de hábitat y la caza (Blanco & Gonzalez, 1992).

En la provincia de Cádiz se conoce que el número de parejas reproductoras se eleva a 270 (Barros & Benítez, 1998) y se conoce la incidencia de las labores agrícolas sobre la reproducción de la especie (Barros & Benítez, 1995). Esto también sucede en la mayoría de las regiones españolas, sin embargo aún faltan estudios en profundidad acerca de la selección del hábitat de la especie.

Por ello se ha realizado un trabajo sobre la selección del hábitat de nidificación a fin de conocer que aspectos condicionan la nidificación...
de la especie. Además, este tipo de estudios son importantes por el factor predictivo que proporcionan, de gran interés para establecer medidas de conservación (Newton, 1979). En el presente artículo se presenta una descripción cuantitativa de las características del hábitat seleccionado por esta especie durante la nidificación.

METODOLOGÍA

Los criterios utilizados para la elección de las áreas de estudio han sido el que posean una gran intensidad de muestreo, permitiéndonos un conocimiento exhaustivo del número total de nidos y su localización, además de la existencia de buenas poblaciones de aguiluchos.

La zona de estudio abarca una extensión de 538 kilómetros cuadrados, dividida en tres zonas que se han denominado La Janda, Campana Occidental, y Campana Oriental. La zona de La Janda se ubica entre los términos municipales de Tarifa y Barbate, con una extensión de 11 por 9 kilómetros; la Campana Occidental en los términos de Jerez, Sanlúcar, Puerto de Santa María y Rota, con una extensión de 18 por 18 kilómetros; y por último, Campana Oriental en los términos de Bornos, Villamartín y Espera, con 11 por 10 kilómetros de superficie.

El total de nidos incluidos en el estudio ha sido de 78, localizando la situación exacta de cada uno de ellos sobre los Mapas Topográficos Nacionales de escala 1:50000 del Servicio Cartográfico del Ejército. Para cada uno de las tres áreas se situaron tantos puntos al azar como nidos, escogidos aleatoriamente, desechando aquellos puntos al azar a los que correspondieron localizaciones tales como aglomeraciones urbanas, pantanos y ríos, por la imposibilidad de la especie para reproducirse en ellos (Gonzalez, 1991).

Como resultado, el área global de muestreo contó con un total de 156 puntos, considerándose cada uno de ellos como una unidad de muestreo. En cada unidad de muestreo se midieron un total de 38 variables (Tabla 1) que explicarían las características del hábitat. Todas las mediciones se realizaron sobre el terreno, excepto las variables DISTPOBL, DISTMONT, XINCLINA, ALTITUD y RUGOSIDAD que se midieron sobre los mapas topográficos.

Para poder realizar las mediciones del grupo de variables “coberturas”, “número de...” y “metros de...”, era necesaria la existencia de un área delimitada y de igual tamaño para todos los puntos, por lo que se tomó una circunferencia con centro en el nido y de radio 127 metros, distancia resultante de la mitad de la distancia media entre nidos (n=103), (Rateliffe, 1962; Korchert, 1972).

En aquellas circunferencias en las que existían más de un tipo de cultivo, se utilizó el programa informático de gráficos para a partir de mediciones sobre el terreno, dibujar un plano a escala con el fin de calcular los metros cuadrados de cobertura de cada uno de los cultivos que lo compusieron.

Al conjunto de valores obtenido para cada una de las variables sobre las 156 unidades de muestreo se les aplicó primero la prueba de Kruskal-Wallis, utilizando un programa estadístico, para determinar si existen diferencias significativas entre los “puntos con nido” y los puntos “sin nido” o “al azar”. Este análisis no se aplicó a la variable TIPCULTI por tratarse de valores cualitativos, aplicándose a esta la prueba del Test de Fisher con la misma finalidad en que en el resto de las variables. No se ha realizado esta prueba utilizando los 11 tipos de cultivo como categorías independientes (Tabla 2), sino agrupados en tres categorías (Tabla 3), incluyendo cada una de estas: trigo, heno y cebada en CULTIVOS DE CEREAL; remolacha, girasol, garbanzo, habas y viñedo en CULTIVO NO CEREAL; y pastizal, barbecho y dehesa en OTROS.

Para la aplicación de la prueba del análisis discriminante por pasos es necesario que las variables incluidas presenten una Distribución Normal. En todas las variables, excepto las de “cobertura”, “número de...” y “metros de...” pudieron normalizarse los datos de su distribución mediante la transformación a raíz cuadrada, incluyendo solo 16 variables en el análisis.
Por último, a la matriz de datos resultante de medir este grupo de variables normalizadas, se les aplicó un análisis discriminante por pasos, utilizando un programa de la serie BMDP (Dixon & Brown, 1983), para identificar el conjunto de variables que distinguía mejor entre puntos “con nido” y puntos “al azar”. El análisis permite construir una función de esas variables que mejor definen el hábitat de nidificación de la especie.

RESULTADOS

De un total de 37 variables analizadas, son 17 las que muestran diferencias estadísticamente significativas entre puntos “con nido” y puntos “al azar” (Tabla 4). Este conjunto de variables significativas se puede dividir en tres grupos; referentes a la vegetación (COBTRIGO, COBCEBAD, COBHENO, COBDEHES, COBPASTI, COBVIÑED, DISTTRIG, DISTREMO, DISTGIRA, DISTLINDE, MLINDE, NARBOLES y NCUULTIVO), al grado de humanización (NCONSTRU y MCARRETE) y al grado de agregación (DISTNIDO y NNIDOS). Así, respecto a la vegetación, los puntos “con nido” se localizarían en zonas con presencia de cultivos cerealísticos (COBTRIGO, COBCEBAD, COBHENO y DISTTRIG), desplazados hacia las lín- des de las parcelas (DISTLINDE y MLINDE), con un alto número de cultivos diferentes (NCULTIVO) y en especial cercanos a los de remolacha y girasol (DISTREMO y DISTGIRA); mientras que los puntos “al azar” se localizarían en zonas con cultivos arbustivos (COBVIÑED), con presencia de árboles (COBDEHES y NARBOL) y áreas de uso ganadero (COBPA). En cuanto a las variables referentes al grado de humanización, los puntos “al azar” estarían en zonas con más cortijos y caminos asfaltados (NCONSTRU y MCARRETE) que los puntos “con nido”, y estos últimos, en cuanto al grado de agregación, tenderían a estar más cercanos entre sí (DISTNIDO y NNIDOS).

El Test de Fisher utilizado para la variable cualitativa TIPCULTI indica que existen diferencias significativas (p<0.001) en la distribución de puntos “con nido” y “al azar” en los distintos tipos de cultivos.

El análisis discriminante por pasos muestra que es posible clasificar correctamente el 94.87% de los puntos “con nido” y el 82.05% de los puntos “al azar” (p<0.0001) con solo 4 variables, por lo tanto el porcentaje total de clasificación correcta es del 88.46%.

La función discriminante que permite esta distinción entre los puntos “con nido” y “al azar” es la siguiente:

\[D = -1.88180 + 0.15286 (XINCLINA) + 0.08009 (DISTNIDO) - 0.0136 (DISTREMOL) - 0.01391 (DISTTENDIDO) \]

Los grupos centroides fueron 1.2037, tratándose de “puntos al azar” para una D positiva y de puntos “con nido” para una D negativa.

En la tabla 5 se presenta la matriz de clasificación del análisis discriminante por pasos (Gonzalez, Bustamante & Hiraldo, 1990).

DISCUSIÓN

Según los resultados, el aguilullo cenizo selecciona variables relacionadas con el tipo y estructura de vegetación, siendo los lugares idóneos para la ubicación del nido los cultivos cerealísticos, ya que estos son los que mejor protección proporcionan a un nido que se encuentra en el suelo. La especie estaría optando por una buena cobertura vegetal existente en la campiña cerealista frente a una mayor diversidad de hábitats (Jordano, 1981). Parece que sí existe la tendencia a utilizar más unos tipos de cultivos que otro, pues aunque la mayor parte de los nidos están en trigo, en aquellas zonas donde existe disponibilidad de heno éste se utiliza en mayor proporción a la esperada en función de la superficie cultivada. En la tabla 6 pueden verse representados los porcentajes de nidos en cada tipo de cereal en la provincia. Esta situación ya se ha comprobado en otras regiones donde la proporción de cultivos usados para nidificar está en función de la presencia de dicho cultivo en la zona (Castano, 1995).
Existe la tendencia a ubicar los nidos en zonas con alta variedad de cultivos, por lo que su área de campeo o territorio abarca un mosaico variado de formaciones vegetales; además se observa un desplazamiento en la parcela acercándose al límite donde cambia el tipo de cultivo, en especial a los de remolacha y girasol. Todo esto puede tener relación con que en estas áreas con limites de transición la riqueza de presas potenciales es mayor, ideal para el alto espectro trófico que presenta la especie (Hiraldo, Fernandez & Amores, 1975).

El hecho de que los pastizales ganaderos salgan en el análisis como factor a evitar por la especie se debe a que la secuencia de estos últimos años, unida al sobrepastoreo al que se encuentran sometidas estas áreas, haya hecho que la estructura vegetal que debía caracterizar este medio no se encuentre, presentándose como zonas casi desprovistas de vegetación. Por lo que la especie estaría evitando zonas rajas de vegetación que casi se podrían considerar en barbecho. En las áreas elegidas por el aguilucho enizeno suelen estar ausentes los viñedos y las dehesas cercanas al nido, aunque sí sean utilizadas estas como zonas de caza.

A pesar de que esta especie aparezca en zonas de campiña (Ceballos & Guimerá, 1992) con un alto grado de humanización, en el análisis aparece como factor negativo el número de cortijos y metros de carretera en el área delimitada alrededor del nido; esto tiene su lógica, pues se entiende que no sería viable encontrar estas obras a menos de 127 metros del nido, ya que los cortijos representan molestias por la acción humana y por riesgos de depredación por animales domésticos; y lo mismo respecto a las carreteras, ya que estas siempre tienen un buen tráfico que los carriles. El número de árboles aparece como un factor negativo, pero puede ser de modo indirecto debido a las características propias de la campiña cerealista donde ha existido la tradición de cortarlos, a no ser que estuvieran situados en las cercanías del cortijo.

Los resultados del análisis discriminante por pasos indican que es posible clasificar correctamente el 94.87% de los puntos con nido por medio de las variables: porcentaje de inclinación del terreno, distancia al cultivo de remolacha más cercano, distancia al nido más cercano y distancia a la línea eléctrica más cercana. El análisis discriminante permite construir una función con esas 4 variables que valora el grado de adecuación de un determinado hábitat a las necesidades de la especie, lo cual cobra especial importancia a la hora de realizar inventarios de área potenciales (Gonzalez, Bustamante & Hiraldo, 1992).

Lo que se deduce del análisis de las variables es que la especie selecciona preferentemente terrenos donde ubicar el nido con valores bajos de inclinación y que estén relativamente cerca de los cultivos de remolacha, posiblemente por tratarse de buenos territorios de caza o simplemente por ser abundantes en las inmediaciones de áreas de cría (Bort & Surroca, 1995). También muestra preferencia por situarse alejados de las líneas eléctricas, quizás debido al grado de alteración humana que representan (Ferrer & Negro, 1992); y por último, presentan cierta tendencia al gregarismo, pues los nidos suelen estar cercanos a los de otras parejas de la misma especie. Son aproximadamente un 80% de las parejas las que se encuentran formando grupos la mayoría de los cuales están compuestos por 2 o 3 parejas, lo cual podría explicarse por razones de orden trófico (Perez Chiscano & Fernandez Cruz, 1971), o de efectos sobre el éxito reproductivo aún no demostrados (Arroyo, Pinilla & Palomares, 1995).

AGRADECIMIENTOS

Al Doctor Miguel Ferrer, (Estación Biológica de Doñana) y a Federico Fernández (Agencia de Medio Ambiente). Este trabajo ha sido financiado por la Delegación Provincial de Cádiz de la Consejería de Medio Ambiente de la Junta de Andalucía.
BIBLIOGRAFÍA

TABLA 1

Variables utilizadas para el estudio de la selección del hábitat de nidificación.

COBTRIGO: Metros cuadrados con cultivo de trigo en el área delimitada alrededor del nido.
COBREMOL: Metros cuadrados con cultivo de remolacha en el área delimitada alrededor del nido.
COBGIRAS: Metros cuadrados con cultivo de girasol en el área delimitada alrededor del nido.
COBGARBA: Metros cuadrados con cultivo de garbanzos en el área delimitada alrededor del nido.
COHABAS: Metros cuadrados con cultivo de habas en el área delimitada alrededor del nido.
COBCEBAD: Metros cuadrados con cultivo de cebada en el área delimitada alrededor del nido.
COBHENO: Metros cuadrados con cultivo de heno en el área delimitada alrededor del nido.
COBPASTI: Metros cuadrados con formaciones herbáceas no cultivadas en el área delimitada alrededor del nido.
COBVIÑED: Metros cuadrados con cultivo de vid en el área delimitada alrededor del nido.
COBDEHES: Metros cuadrados con formaciones vegetales adehesadas en el área delimitada alrededor del nido.
COBBARBE: Metros cuadrados con zonas en barbecho en el área delimitada alrededor del nido.
NCULTIVO: Número de cultivos distintos en el área delimitada alrededor del nido.
NCONSTRU: Número de cortijos en el área delimitada alrededor del nido.
NARBOLES: Número de árboles en el área delimitada alrededor del nido.
NNIDOS: Número de nidos en el área delimitada alrededor del nido.
MCARRIL: Metros de camino no asfaltado, transitó por vehículos, en el área delimitada alrededor del nido.
MCARRETE: Metros de camino asfaltado en el área delimitada alrededor del nido.
MCANALA: Metros de canal y/o arroyo en el área delimitada alrededor del nido.
MLINDE: Metros de linde que separan distintos tipos de cultivo en el área delimitada alrededor del nido.
MSETO: Metros de linde que presentan formaciones arbustivas (v.g.: Pistacea sp. Opuntia sp.) en el área delimitada alrededor del nido.
MTENDIDO: Metros de línea eléctrica en el área delimitada alrededor del nido.
DISTTRIG: Distancia del nido al cultivo de trigo más cercano.
DISTREMO: Distancia del nido al cultivo de remolacha más cercano.
DISTGIRA: Distancia del nido al cultivo de girasol más cercano.
DISTCONS: Distancia del nido al cortijo más cercano.
DISTARBO: Distancia del nido al árbol más cercano.
DISTPOBL: Distancia del nido al núcleo urbano más cercano.
DISTNIDO: Distancia del nido a otro nido de la misma especie más cercano.
DISTCARRIL: Distancia del nido al camino no asfaltado, transitable por vehículos, más cercano.
DISTCARRET: Distancia del nido al camino asfaltado más cercano.
DISTCANALA: Distancia del nido al canal o arroyo más cercano.
DISTLINDE: Distancia del nido a la linde más cercana con cambio de cultivo.
DISTTENDIDO: Distancia del nido a la línea eléctrica más cercana.
DISTBON: Distancia del nido a la formación natural arbustiva y/o arbórea más cercana.
XINCLINA: Porcentaje de inclinación entre las cuatro curvas de nivel más cercanas, dejando dos a cada lado del nido.
ALTITUD: Altura del nido sobre el nivel del mar.
RUGOSIDA: Índice de irregularidad topográfica.
Número de curvas de nivel que son cortadas por
dos líneas diametrales al círculo de muestreo en dirección N-S y E-W.
TIPCULTI: Formación vegetal donde se ubica el punto. A continuación se detallan los distintos tipos: Trigo, Remolacha, Girasol, Heno, Pastizal, Cebada, Dehesa, Viñedo, Barbecho, Garbanzo y Habas.

TABLA 2

Número de puntos "con nido" y puntos "al azar" o "sin nido" en cada tipo de cultivo.

<table>
<thead>
<tr>
<th>TIPO DE CULTIVO</th>
<th>PUNTOS "CON NIDOS"</th>
<th>PUNTOS "AL AZAR"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo</td>
<td>63</td>
<td>32</td>
</tr>
<tr>
<td>Remolacha</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Girasol</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Heno</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Pastizal</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Cebada</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Dehesa</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Viñedo</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Barbecho</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Garbanzos</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Habas</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLA 3

Número de puntos "con nido" y puntos "al azar" agrupados en las tres categorías.

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>PUNTOS "CON NIDO"</th>
<th>PUNTOS "AL AZAR"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivo de cereal</td>
<td>75</td>
<td>32</td>
</tr>
<tr>
<td>Cultivo no cereal</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>
TABLA 4

Comparación de las variables, medias (X) y desviaciones estandar (SD), entre los puntos “con nido” y puntos “al azar” (Prueba de Kruskal-Wallis).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Puntos con nido</th>
<th>Puntos al azar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
</tr>
<tr>
<td>COBTRIGO</td>
<td>38606.87</td>
<td>18303.41</td>
</tr>
<tr>
<td>COBREMOL</td>
<td>2404.61</td>
<td>5315.10</td>
</tr>
<tr>
<td>COBGIRAS</td>
<td>1106.52</td>
<td>3268.72</td>
</tr>
<tr>
<td>COBGARBA</td>
<td>141.30</td>
<td>872.71</td>
</tr>
<tr>
<td>COBHABAS</td>
<td>1214.10</td>
<td>6116.65</td>
</tr>
<tr>
<td>COBCEBAD</td>
<td>1991.50</td>
<td>9075.54</td>
</tr>
<tr>
<td>COBHENO</td>
<td>4317.70</td>
<td>11380.15</td>
</tr>
<tr>
<td>COBPASTI</td>
<td>591.20</td>
<td>2716.51</td>
</tr>
<tr>
<td>COBVIÑED</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>COBDEHES</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>COBBARBE</td>
<td>108.37</td>
<td>957.11</td>
</tr>
<tr>
<td>NCUITIVO</td>
<td>1.62</td>
<td>0.74</td>
</tr>
<tr>
<td>NCONSTRU</td>
<td>0.02</td>
<td>0.15</td>
</tr>
<tr>
<td>NARBOLES</td>
<td>0.08</td>
<td>0.58</td>
</tr>
<tr>
<td>NNIDOS</td>
<td>0.47</td>
<td>0.71</td>
</tr>
<tr>
<td>MCARRIL</td>
<td>75.36</td>
<td>119.22</td>
</tr>
<tr>
<td>MCARRETE</td>
<td>9.20</td>
<td>42.57</td>
</tr>
<tr>
<td>MCANALÁ</td>
<td>90.14</td>
<td>111.55</td>
</tr>
<tr>
<td>MLINDE</td>
<td>150.56</td>
<td>200.19</td>
</tr>
<tr>
<td>MSETO</td>
<td>1.41</td>
<td>12.45</td>
</tr>
<tr>
<td>MTENDIDO</td>
<td>2.83</td>
<td>25.02</td>
</tr>
<tr>
<td>DISTTRIG</td>
<td>46.30</td>
<td>124.55</td>
</tr>
<tr>
<td>DIRSTREMO</td>
<td>474.21</td>
<td>417.01</td>
</tr>
<tr>
<td>DIRSTGIRA</td>
<td>488.73</td>
<td>362.17</td>
</tr>
<tr>
<td>DIRSTCONS</td>
<td>634.42</td>
<td>326.08</td>
</tr>
<tr>
<td>DIRSTARBO</td>
<td>729.57</td>
<td>343.51</td>
</tr>
<tr>
<td>DIRSTPOBL</td>
<td>3403.58</td>
<td>1518.50</td>
</tr>
<tr>
<td>DISTSNILO</td>
<td>279.70</td>
<td>236.67</td>
</tr>
<tr>
<td>DISTCARRIL</td>
<td>268.00</td>
<td>229.29</td>
</tr>
<tr>
<td>DISTCARRET</td>
<td>847.61</td>
<td>554.30</td>
</tr>
<tr>
<td>DISTCANALÁ</td>
<td>239.97</td>
<td>252.47</td>
</tr>
<tr>
<td>DISTLINDDE</td>
<td>191.21</td>
<td>168.24</td>
</tr>
<tr>
<td>DISSTENDID</td>
<td>1418.26</td>
<td>1101.31</td>
</tr>
<tr>
<td>DISTMONT</td>
<td>4556.70</td>
<td>2764.13</td>
</tr>
<tr>
<td>XINCLINA</td>
<td>2.89</td>
<td>3.44</td>
</tr>
<tr>
<td>ALITTUD</td>
<td>50.87</td>
<td>43.54</td>
</tr>
<tr>
<td>RUGOSIDA</td>
<td>10.60</td>
<td>4.35</td>
</tr>
</tbody>
</table>

*P<0.05 **P<0.001 ***P<0.0001
TABLA 5

Matriz de clasificación del análisis discriminante por pasos. Los valores en **negrita** indican el número y porcentaje de casos clasificados correctamente.

<table>
<thead>
<tr>
<th>GRUPO PREDICTIVO</th>
<th>Puntos con nido</th>
<th>Puntos al azar</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRUPO ACTUAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puntos con nido</td>
<td>Número</td>
<td>Porcentaje</td>
</tr>
<tr>
<td></td>
<td>74</td>
<td>94.87</td>
</tr>
<tr>
<td>Puntos al azar</td>
<td>14</td>
<td>17.95</td>
</tr>
</tbody>
</table>

TABLA 6

Porcentajes de nidos en cada tipo de cereal y porcentajes de cada cereal en la provincia.

<table>
<thead>
<tr>
<th>CEREAL</th>
<th>Porcentaje nidos</th>
<th>Porcentaje provincial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cebada</td>
<td>4.65</td>
<td>5.47</td>
</tr>
<tr>
<td>Heno</td>
<td>5.23</td>
<td>1.04</td>
</tr>
<tr>
<td>Trigo</td>
<td>90.12</td>
<td>93.49</td>
</tr>
</tbody>
</table>